Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: evidence from continuous cultures.
نویسندگان
چکیده
Expression of the genes of the alkane degradation pathway encoded in the Pseudomonas putida OCT plasmid are subject to negative and dominant global control depending on the carbon source used and on the physiological status of the cell. We investigated the signals responsible for this control in chemostat cultures under conditions of nutrient or oxygen limitation. Our results show that this global control is not related to the growth rate and responds to two different signals. One signal is the concentration of the carbon source that generates the repressing effect (true catabolite repression control). The second signal is influenced by the level of expression of the cytochome o ubiquinol oxidase, which in turn depends on factors such as oxygen availability or the carbon source used. Since under carbon limitation conditions the first signal is relieved but the second signal is not, we propose that modulation mediated by the cytochrome o ubiquinol oxidase is not classical catabolite repression control but rather a more general physiological control mechanism. The two signals have an additive, but independent, effect, inhibiting induction of the alkane degradation pathway.
منابع مشابه
The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants.
The alk genes are located on the OCT plasmid of Pseudomonas oleovorans and encode an inducible pathway for the utilization of n-alkanes as carbon and energy sources. We have investigated the influence of alternative carbon sources on the induction of this pathway in P. oleovorans and Escherichia coli alk+ recombinants. In doing so, we confirmed earlier reports that induction of alkane hydroxyla...
متن کاملInactivation of cytochrome o ubiquinol oxidase relieves catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.
Expression of the alkane degradation pathway encoded by the OCT plasmid of Pseudomonas putida GPo1 is regulated by two control systems. One relies on the transcriptional regulator AlkS, which activates expression of the pathway in the presence of alkanes. The other, which is a dominant global regulation control, represses the expression of the pathway genes when a preferred carbon source is pre...
متن کاملRole of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.
Expression of the alkane degradation pathway encoded in the OCT plasmid of Pseudomonas putida GPo1 is induced in the presence of alkanes by the AlkS regulator, and it is down-regulated by catabolic repression. The catabolic repression effect reduces the expression of the two AlkS-activated promoters of the pathway, named PalkB and PalkS2. The P. putida Crc protein participates in catabolic repr...
متن کاملControlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli.
The OCT plasmid encodes enzymes for alkane hydroxylation and alkanol dehydrogenation. Structural components are encoded on the 7.5-kilobase pair alkBAC operon, whereas positive regulatory components are encoded by alkR. We have constructed plasmids containing fusions of cloned alkBAC and alkR DNA and used these fusion plasmids to study the functional expression of the alkBAC operon and the regu...
متن کاملPlasmid-determined alcohol dehydrogenase activity in alkane-utilizing strains of Pseudomonas putida.
We have identified an alcohol dehydrogenase activity in Pseudomonas putida strains carrying the CAM-OCT degradative plasmid that were grown on octane. The activity is nicotinamide adenine dinucleotide independent, sediments at 48,000 x g, and shows 20-fold greater activity with octanol rather than butanol as substrate. The enzyme is inducible by unoxidized alkane and is present only in strains ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 185 16 شماره
صفحات -
تاریخ انتشار 2003